MADEL

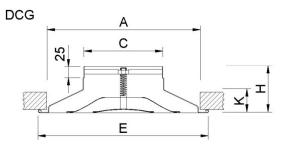
DCG difusores circulares de cones reguláveis

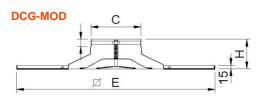
Os difusores da série **DCG** foram concebidos para aplicação em ar condicionado, ventilação e aquecimento para locais com diferentes alturas a partir de 2,6 metros.

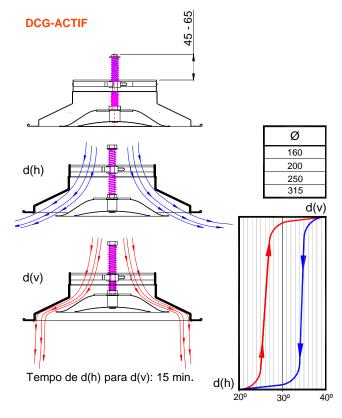
A sua montagem realiza-se em tectos falsos, condutas ou suspensos do tecto.


A difusão do ar pode ser variada graças à possibilidade de regulação dos seus cones interiores, mudando de projecção horizontal para projecção vertical, proporcionando boas prestações para diferenciais de temperaturas até 120° C.

Design: Lievore, Altherr & Molina







	Е	Α	Н	K	O
160	331	303	101	44	157
200	425	385	115	58	197
250	492	464	114	57	247
315	591	564	137	80	313
355	662	630	140	83	353
400	662	630	131	74	398
450	832	793	173	106	447
500	832	793	163	97	497

			МО	D-600	MOI	D-625	МОІ	D-675
	Н	С	В	Е	В	Е	В	Е
160	101	157	12	595	12	620	15	670
200	115	197	12	595	12	620	15	670
250	114	247	12	595	12	620	15	670
315	137	313	12	595	12	620	15	670

CLASSIFICAÇÃO

DCG Difusor circular de cones reguláveis.

DCG-ACTIF Difusor termorregulável de forma autónoma. Para instalar a uma altura a partir de 4 metros, para reduzir a estratificação do ar. A difusão do ar varia graças à regulação dos seus cones interiores através de um elemento termo-expansível sem ligação elétrica, mudando de projeção horizontal para projeção vertical em função da temperatura de impulsão do ar.

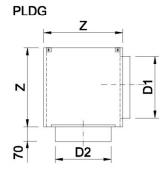
DCG-MOD Difusor concebido especialmente para instalar em tectos modulares

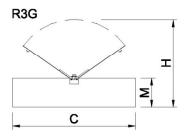
.../T15/ Placa para tectos modulares de perfil de 15 mm e placa solta.

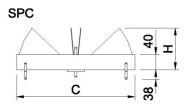
.../T24/ Placa para tectos modulares de perfil de 24 mm e placa solta.

MATERIAL

Difusores construídos em alumínio e parafuso central em aço zincado.







	D2	Z	D1
160	160	220	158
200	200	260	198
250	250	310	248
315	317	375	313
355	357	415	353
400	402	460	398
450	450	510	448
500	499	560	498

	М	Н	С
160	55	119	157
200	55	139	197
250	55	164	247
315	55	198	313
355	55	218	353
400	55	241	398
450	65	274	447
500	65	299	497

	Н	D1
160	62	158
200	72	198
250	90	248
315	105	313
355	127	353
400	147	398
450	165	448
500	183	498

ACESSÓRIOS

PLDG Pleno com ligação circular lateral. Inclui suportes para suspensão no tecto.

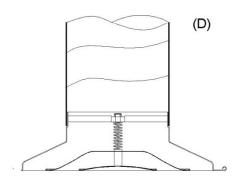
Construído em aço galvanizado.

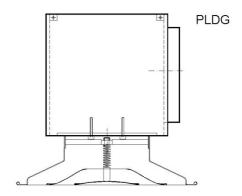
...-R Pleno com regulador de caudal na gola de ligação.

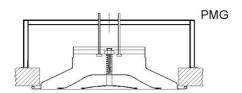
.../S/ Pleno com ligação circular superior.

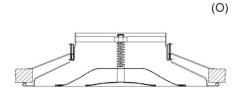
.../AIS/ Pleno isolado termoacusticamente através de uma espuma com um coeficiente de condutividade térmica de 0,04 w/mk.

A espuma cumpre as normas de reacção ao fogo:


UNE 23-727 M2 NFP 92-501 M2 DIN 4102 M2


R3G Regulador de caudal tipo borboleta, montado na gola do difusor. Accionamento manual. Construído em aço galvanizado.


SPC Regulador de caudal de alhetas opostas. Inclui suportes para fixação directa à conduta circular. Accionamento através de parafuso central. Construído em aço galvanizado



SISTEMAS DE FIXAÇÃO

- Fixação directa a conduta circular metálica através de rebites.
- (P) Fixação directa no pleno PLDG através de dois parafusos centrais e suspensão do conjunto no tecto com varões.

Sistema incompatível com DCG-ACTIF e com reguladores de caudal . Para a regulação do caudal em instalação com pleno, aconselhamos o pleno PLDG-R que inclui um regulador na gola de ligação (disponível até Diâm. 355)

(P) Fixação com parafuso central na ponte de montagem PMG. Construído em aço galvanizado. Indicado para instalações em tecto falso com conduta rectangular.

Sistema incompatível com DCG-ACTIF e com o regulador de caudal SPC.

(O) Fixação com parafuso oculto, para instalações em tecto falso com conduta circular flexível. Sistema compatível com todos os reguladores de caudal.

Disponível para DCG de diâmetro nominal máximo 400 mm.

Sistema incompatível com DCG-ACTIF

ACABAMENTOS

M9006 Lacado cor cinzenta metalizada idêntico ao RAL 9006.

R9010 Lacado cor branca RAL 9010.

M9016 Lacado cor branca idêntico ao RAL 9016.

RAL.... Lacado outras cores RAL.

VELOCIDADE RECOMENDADA.

DCG	Vmin m/s	Vmax m/s
160	3	5,7
200	3	5,8
250	3	4.5
315	3	5,7
350	3	6,2
400	3	6
450	3	4.5
500	3	4.5

SECÇÃO NA GOLA m2.

DCG	Ak		Qmax
	m2	m3/h	m3/h
160	0.02	215	410
200	0.0314	340	660
250	0.049	530	795
315	0.0779	835	1615
350	0.0962	1035	2175
400	0.125	1350	2730
450	0.159	1560	2655
500	0.196	1890	3160

VALORES DE CORRECÇÃO PARA DPt Y Lwa1.

DCG-R3G d(h) = +11mm

		100%	50%
160	DPt (Kp)	x1,2	x4,7
100	Lwa1 (Kf)	+1,4	+16

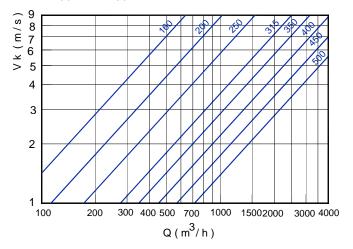
DCG-R3G d(v) = -5mm

	,		
		100%	50%
160	DPt (Kp)	x1,2	x4.7
100	Lwa1 (Kf)	+1.4	+16

 $DPt1 = Kp \times DPt$ Lwa = Lwa1 + Kf

VALORES DE CORRECÇÃO PARA DPt Y Lwa1.

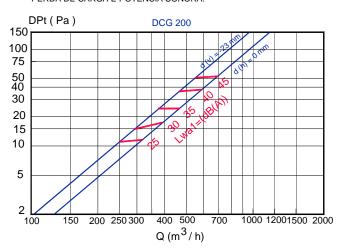
DCG-R3G d(h) = +10mm


	DOO 1100 d(11) = 1 1011111						
I			100%	50%			
I	200	DPt (Kp)	x1,1	x3,6			
I	200	Lwa1 (Kf)	+1,3	+16			

DCG-R3G d(v) = -15mm

		100%	50%
200	DPt (Kp)	x1,1	x3,6
200	Lwa1 (Kf)	+0,8	+15

 $DPt1 = Kp \times DPt$ Lwa = Lwa1 + Kf

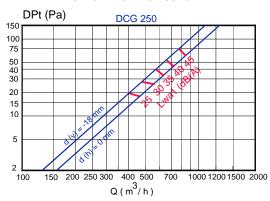

VELOCIDADE NA GOLA.

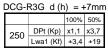
PERDA DE CARGA E POTÊNCIA SONORA.

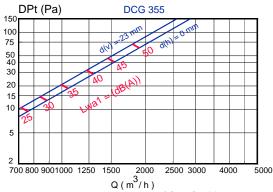
PERDA DE CARGA E POTÊNCIA SONORA.

Nota: Em MadelMedia Espectro por banda de oitava em Hz.

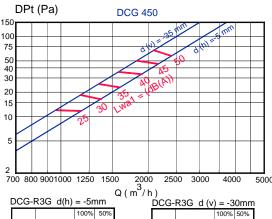
6 DCG-GR1-09/06



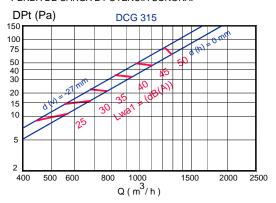



PERDA DE CARGA E POTÊNCIA SONORA.

 $\underline{\mathsf{DCG}\text{-}\mathsf{R3G}}\ \mathsf{d}\left(\mathsf{v}\right) = -17\mathsf{mm}$ 100% 50% DPt (Kp) x1,1 x3,7 Lwa1 (Kf) +3,8 +20

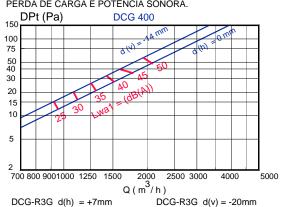

PERDA DE CARGA E POTÊNCIA SONORA.

DCG-R3G $d(h) = +5mm$					
		100%	50%		
255		x1,2	х8		
333	Lwa1 (Kf)	+2,2	+11		

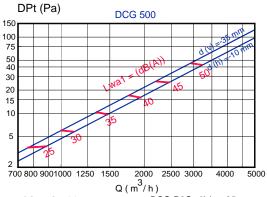

DCG-R3G $d(v) = -23mm$						
I			100%	50%		
I	355	DPt (Kp)	x1,2	x8		
ı		Lwa1 (Kf)	+1.6	+10		

PERDA DE CARGA E POTÊNCIA SONORA.

100% 50%
DPt (Kp) x1,2 x7,1 100% 50% DPt (Kp) x1,2 x7,1 Lwa1 (Kf) +3,2 +17 Lwa1(Kf) +3,5 +17


PERDA DE CARGA E POTÊNCIA SONORA.

DCG-R3G $d(h) = +5mm$				
		100%	50%	
ا مر	DPt (Kp)	x1,5	x6,5	
315	Lwa1 (Kf)	+1,3	+16	


	DCG-R3G d (v) = -22mm				
			100%	50%	
	315	DPt (Kp)	x1.5	x6.5	
		Lwa1 (Kf)	+0,6	+15	

PERDA DE CARGA E POTÊNCIA SONORA.

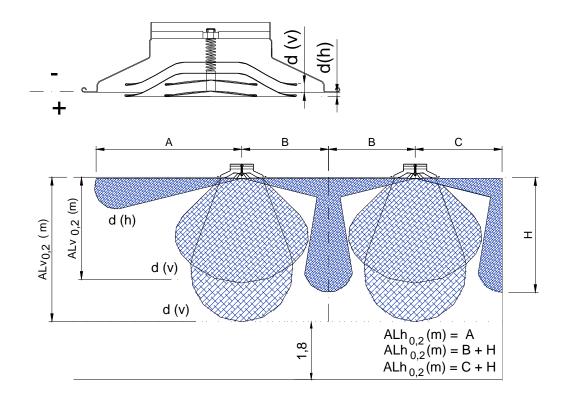
DCG-R3G $d(h) = +7mm$			DCG-R3G $d(v) = -20mm$			mm		
		100%	50%				100%	50%
400	DPt (Kp)					DPt (Kp)	x1,1	x3,4
†	Lwa1 (Kf)	+2,2	+17		400	Lwa1 (Kf)	+1,6	+16

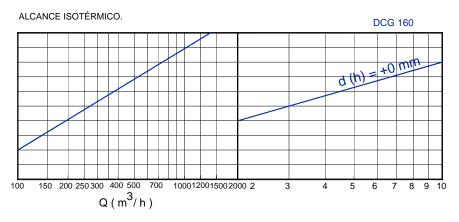
PERDA DE CARGA E POTÊNCIA SONORA.

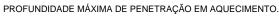
Į	DCG-F	R3G d(h)	= -10	mm
			100%	50%
	500	DPt (Kp)	x1,2	x5,8
		Luca (1/6)	. 2 2	. 10

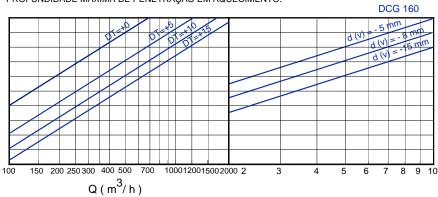
[DCG-R3G $d(v) = -35mm$					
			100%	50%		
	500	DPt (Kp)	x1,2	x5,8		
		Lwa1 (Kf)	+1,5	+18		

7 DCG-GR2-09/06

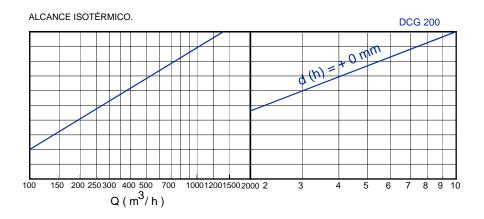


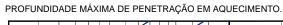


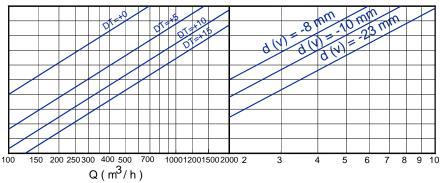


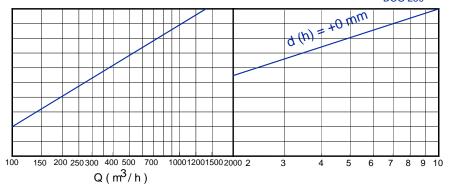


8 DCG-GR3-09/06

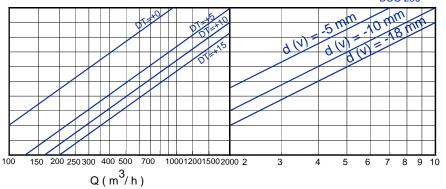








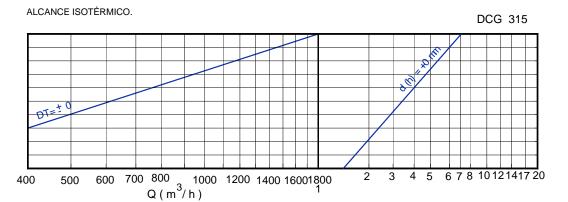
DCG 200


ALCANCE ISOTÉRMICO.

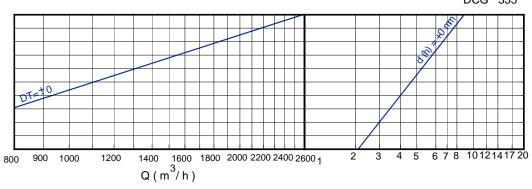
DCG 250

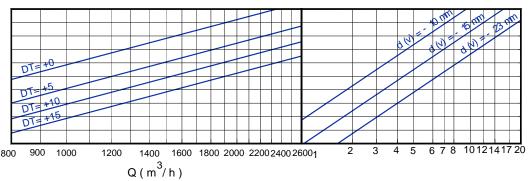
PROFUNDIDADE MÁXIMA DE PENETRAÇÃO EM AQUECIMENTO.

DCG 250


9 DCG-GR4-09/06




PROFUNDIDADE MÁXIMA DE PENETRAÇÃO EM AQUECIMENTO.

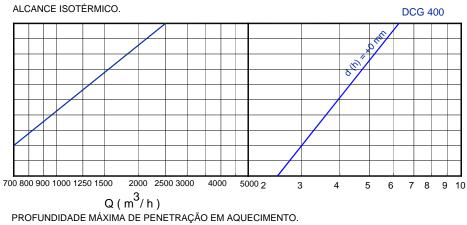

ALCANCE ISOTÉRMICO.

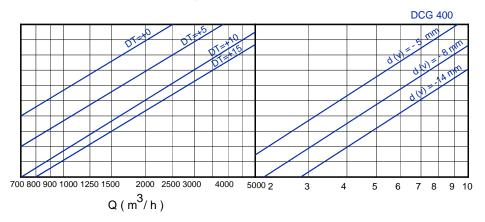
DCG 355

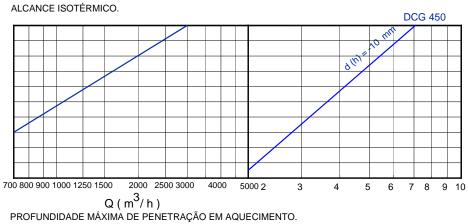
PROFUNDIDADE MÁXIMA DE PENETRAÇÃO EM AQUECIMENTO.

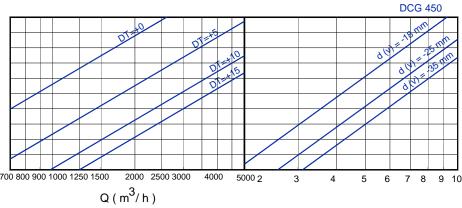
DCG 355

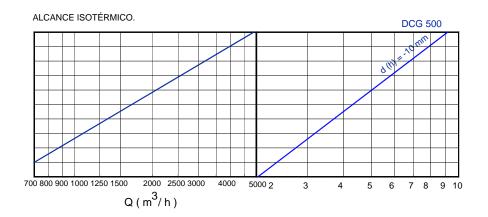
10 DCG-GR5-09/06

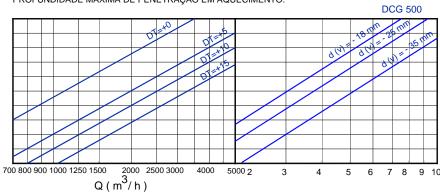












12 DCG-GR7-09/06